• Published on: Apr 30, 2022
  • 2 minute read
  • By: Second Medic Expert

What Is PET Scan ?

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

A PET scan (positron emission tomography) is a type of imaging test that uses a radioactive tracer to look for changes in the function of cells and tissues. A tracer is a substance that is introduced into the body to make it easier to see certain areas or organs. The radioactive tracer used in PET scans emits positrons, which are tiny particles that collide with electrons in the body. This creates gamma rays that can be detected by a scanner and used to create images of the inside of the body. PET scans are often used to diagnose cancer because tumor cells typically have higher levels of activity than normal cells. They can also be used to check for treatment response, measure tumor size, and identify new tumors.

PET Scan is a nuclear medicine imaging test that uses a small amount of radioactive material, called a tracer, to look for disease in the body. A PET Scan can show how well organs and tissues are working. It can help find cancer, heart problems, and other diseases. A Positron Emission Tomography (PET) scan is a medical imaging test that helps physicians diagnose and treat diseases. PET scans use a small amount of radioactive material, called a tracer, to help physicians see how organs and tissues are functioning. The radioactive tracer is injected into the patient's body and travels to the organ or tissue being studied. Physicians can then see where the tracer collects on an image of the organ or tissue.

A PET scan is helpful in diagnosing cancer, heart disease, brain disorders, and other diseases. It can also help determine how well treatment is working. PET Scan is an acronym for Positron Emission Tomography. It's a type of medical imaging that uses a small amount of radioactive material to help diagnose and treat medical conditions. A PET scanner creates 3D images of the inside of the body. PET (positron emission tomography) scans use a small amount of radioactive material called a tracer to help doctors see certain areas of the body. The tracer is injected into a vein, and images are taken as it moves through the body.

PET scans are often used to find cancer because tumors absorb more of the radioactive material than normal tissue does. PET scans can also be used to measure blood flow, check how well drugs work, and see how active the brain is. A PET scan is a type of imaging test that uses radioactive tracers to look at the function and structure of organs and tissues in your body. A small amount of radioactive material is injected into your bloodstream and then scanned by a special camera. The camera creates pictures that show where the material has collected. This can help doctors see how well an organ is working or find tumors or other problems.

PET scan is short for positron emission tomography. It's a type of medical imaging that uses a radioactive tracer to look at organ function or tissue metabolism. The tracer is a small amount of radioactive material that's injected into the patient's bloodstream. It collects in organs and tissues, and a scanner detects the radiation emitted as it decays. This information is used to create cross-sectional images of the body that show how the organs and tissues are working. PET scans are most often used to detect cancer because tumors consume more energy than normal tissue and therefore have a higher metabolic rate. But they can also be used to evaluate other problems, such as heart disease, brain function, and joint damage.

PET scanning is a type of nuclear medicine imaging. A small amount of radioactive glucose (FDG) is injected into a vein and images are taken as the glucose moves through the body. Cancer cells use more energy than normal cells and therefore absorb more of the radioactive glucose. This allows tumors to be visualized on the scan. PET stands for Positron Emission Tomography. A PET scan is a medical imaging test that uses a radioactive tracer to look at organs and tissues inside the body. The tracer is injected into a vein, and images are taken as it moves through the body.

Read Blog
Machine Learning in Healthcare India: A New Era of Predictive and Personalized Care

Machine Learning in Healthcare India: A New Era of Predictive and Personalized Care

Machine learning is driving one of the biggest transformations in Indian healthcare. Machine learning in healthcare India is improving diagnostics, predicting diseases early, and enabling personalized treatment plans based on large volumes of medical data. India’s enormous population, diverse health patterns, and rising burden of lifestyle diseases make ML an essential technology for improving care outcomes.

SecondMedic integrates machine learning across diagnostics, risk scoring, preventive care, and remote monitoring to create intelligent, data-driven healthcare experiences.

Why Machine Learning Is Crucial for India’s Healthcare

India faces major challenges: increasing chronic diseases, low doctor-to-patient ratio, and gaps in early diagnosis. Machine learning helps overcome these limitations through automated analysis and predictive insights.

ML supports:

  • Accurate disease prediction

  • Faster diagnosis

  • Personalized treatment

  • Proactive health management

  • Population-level insights
     

These benefits significantly improve care outcomes.

Machine Learning in Diagnostics

ML excels at interpreting complex medical data faster than traditional methods.

ML improves diagnostics by:

  • Identifying abnormal patterns

  • Analyzing imaging scans

  • Interpreting lab values

  • Comparing historical trends

  • Supporting clinical decisions
     

This reduces misdiagnosis and saves time.

Predictive Healthcare with Machine Learning

Predictive analytics is one of the most powerful ML applications.

ML predicts risks for:

  • Heart disease

  • Diabetes

  • Kidney disorders

  • Thyroid imbalances

  • Mental health issues

  • Respiratory disorders
     

SecondMedic provides predictive scoring for early detection.

Personalized Treatment Planning

Machine learning tailors treatment to individual needs.

ML personalizes care based on:

  • Age and genetics

  • Lifestyle patterns

  • Vitals and wearable data

  • Sleep and stress levels

  • Previous medical history
     

This ensures more accurate and effective treatment.

ML in Remote Patient Monitoring

With the rise of home healthcare, ML analyzes continuous vitals data.

ML monitors:

  • Heart rate

  • Blood oxygen

  • Blood sugar

  • Blood pressure

  • Sleep cycles
     

AI-generated alerts support timely intervention.

ML in Medical Imaging

ML enhances imaging interpretation by detecting subtle visual patterns.

Applications include:

  • Lung infections

  • Cancer markers

  • Cardiac abnormalities

  • Brain lesions

  • Kidney anomalies
     

This improves radiology accuracy and speed.

ML for Population Health in India

ML identifies health trends at a large scale, helping policymakers and hospitals plan resources.

ML provides:

  • Outbreak prediction

  • Disease burden patterns

  • Community health insights

  • Regional risk mapping
     

These tools help improve national healthcare planning.

Challenges in ML Healthcare Adoption

While ML is powerful, challenges include:

  • Data quality issues

  • Need for clinical validation

  • Privacy concerns

  • Infrastructure limitations

  • Need for skilled professionals
     

SecondMedic follows ethical ML standards and ensures secure data practices.

Future of Machine Learning in Indian Healthcare

Upcoming innovations include:

  • Deep learning diagnostics

  • Digital health twins

  • Fully AI-driven preventive dashboards

  • ML-based robotic treatments

  • Genomic ML predictions
     

SecondMedic is committed to building future-ready ML healthcare solutions.

Conclusion

Machine learning in healthcare India is transforming medical care through predictive analytics, personalized treatment, and early disease detection. SecondMedic uses machine learning across its digital ecosystem to deliver accurate, efficient, and patient-centered care.

To explore ML-powered healthcare tools, visit www.secondmedic.com

References

  1. NITI Aayog – AI & ML in Indian Healthcare

  2. WHO – Machine Learning in Clinical Practice

  3. ICMR – India Chronic Disease Data

  4. IMARC – AI & ML Healthcare India

  5. FICCI – Emerging Health Technologies India

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic